Rheology and dynamics of simple and complex liquids in mesoporous matrices
Authors
More about the book
Subject of my thesis is a study of rheologic and dynamic properties of fluids confined in an isotropic pore network with pore radii of approx. 5nm embedded in a monolithic silica matrix (porous Vycor). The experimental technique bases on the capillary rise of a wetting liquid in a porous substrate, also known as spontaneous imbibition. A crucial part of the conducted experiments centers on the increasing relevance of the liquid-substrate interface in the mesopore confinement. Detailed analyses of the measurements carried out with water, silicon oils, and a series of hydrocarbons result in precise information on the boundary conditions expressed in terms of the velocity slip length. Systematic variations of the chain-length of the used hydrocarbons also allow for an assessment of the influence of the shape of the liquid? s building blocks on the nanoscopic flow behavior. Supplemental forced throughput experiments additionally address the impact of the liquid-substrate interaction. Furthermore, the influences of spatial confinement on the surface freezing transition of the linear hydrocarbon n-tetracosane as well as on the mesophase transitions of the liquid crystal 8OCB are investigated. Finally, a third, more general study focuses on the kinetics of the invasion front, which is supposed to be influenced significantly by the random environment of the pore space considered