Einführung in die Mehrebenenanalyse mit MLwiN 2.16
Authors
Parameters
More about the book
Die in diesem Büchlein dargestellten Modelle stellen nur einen kleinen Ausschnitt aus der Menge der möglichen Anwendungen dar. Besonderes Potential ist in den Modellen mit nominalskalierten Responsevariablen (z. B. Raucher versus Nichtraucher) zu sehen. Besonderes Interesse bei Gesundheitsforschern haben die „cross level interactions models“ hervorgerufen. In diesen Modellen werden Kontextvariable mit individuellen Variablen verknüpft. Mit der Mehrebenenanalyse können auch abhängige Messungen modelliert werden (z. B. abhängige Messung auf Ebene 1, Person auf Ebene 2, Klasse auf Ebene 3 und Schule auf Ebene 4). Die Mehrebenenanalyse geht weit über die Regressionsanalyse hinaus, indem sie es ermöglicht, geclusterte Daten aus sozialen Entitäten zu modellieren. Das Potential von MLWin wird durch die MLWin-Entwicklungsgruppe ständig erhöht und lässt weitere interessante Impulse für Forschung in der Zukunft erwarten.
Book purchase
Einführung in die Mehrebenenanalyse mit MLwiN 2.16, Herbert Schwetz
- Language
- Released
- 2010
Payment methods
- Title
- Einführung in die Mehrebenenanalyse mit MLwiN 2.16
- Language
- German
- Authors
- Herbert Schwetz
- Publisher
- Empirische Pädagogik
- Released
- 2010
- ISBN10
- 3941320424
- ISBN13
- 9783941320420
- Series
- Forschung, Statistik & Methoden
- Category
- Mathematics
- Description
- Die in diesem Büchlein dargestellten Modelle stellen nur einen kleinen Ausschnitt aus der Menge der möglichen Anwendungen dar. Besonderes Potential ist in den Modellen mit nominalskalierten Responsevariablen (z. B. Raucher versus Nichtraucher) zu sehen. Besonderes Interesse bei Gesundheitsforschern haben die „cross level interactions models“ hervorgerufen. In diesen Modellen werden Kontextvariable mit individuellen Variablen verknüpft. Mit der Mehrebenenanalyse können auch abhängige Messungen modelliert werden (z. B. abhängige Messung auf Ebene 1, Person auf Ebene 2, Klasse auf Ebene 3 und Schule auf Ebene 4). Die Mehrebenenanalyse geht weit über die Regressionsanalyse hinaus, indem sie es ermöglicht, geclusterte Daten aus sozialen Entitäten zu modellieren. Das Potential von MLWin wird durch die MLWin-Entwicklungsgruppe ständig erhöht und lässt weitere interessante Impulse für Forschung in der Zukunft erwarten.