We have tens of thousands of books in stock.

Bookbot
The book is currently out of stock

Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

Authors

More about the book

Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion transport the ionic conductivity in SOFC electrolytes is required to be high. Using a layering of zirconium and yttrium in the fluorite structure and applying DFT and NEB again, a high vacancy concentration and a very low migration barrier in two dimensions is observed, while the mobility in the third direction is sacrificed. The ionic conductivity of this new structure at 500◦C surpasses that of the state of the art electrolyte Yttrium Stabilized Zirconia (YSZ) at 800◦C. Throughout the process of searching for augmented ionic conductivity, the NEB method has particularly been used extensively and has been examined in detail. This method has been applied to quite different systems to gain a better understanding of it. While NEB has been applied, it has been found that a certain modification of the NEB, the Minimum search Nudged Elastic Band (MsNEB), is able to find global minima in a complex phase space. Furthermore, the MsNEB turns out to be complementary to simulated annealing and the genetic algorithm. This new scheme has not been applied to electrolyte materials, yet. However, its capabilities have been demonstrated by detecting the most stable isomers of the phosphorus P4, P8 molecules and the corresponding molecules of Asn, Sbn, Bin, (n = 4, 8). In the case of P8, the new MsNEB has led to a hitherto unknown configuration, being more stable than the previously assumed ground state.

Book variant

2013

Book purchase

The book is currently out of stock.