The book presents five innovative qualitative investment decision-making methods utilizing hesitant fuzzy information. These methods include asymmetric hesitant fuzzy sigmoid preference relations, hesitant fuzzy trade-off and portfolio selection, preference envelopment analysis, peer-evaluation and strategy fusion, as well as EHVaR measurement combined with tail analysis. Each method offers a unique approach to enhance investment strategies, catering to the complexities of decision-making in uncertain environments.
The book systematically explores hesitant fuzzy theory, delving into key areas such as aggregation techniques, measures, clustering algorithms, and multi-attribute decision-making methods. It provides a comprehensive foundation for understanding and applying hesitant fuzzy concepts, making it a valuable resource for researchers and practitioners in the field.
This book introduces methods for uncertain multi-attribute decision making including uncertain multi-attribute group decision making and their applications to supply chain management, investment decision making, personnel assessment, redesigning products, maintenance services, military system efficiency evaluation. Multi-attribute decision making, also known as multi-objective decision making with finite alternatives, is an important component of modern decision science. The theory and methods of multi-attribute decision making have been extensively applied in engineering, economics, management and military contexts, such as venture capital project evaluation, facility location, bidding, development ranking of industrial sectors and so on. Over the last few decades, great attention has been paid to research on multi-attribute decision making in uncertain settings, due to the increasing complexity and uncertainty of supposedly objective aspects and the fuzziness of human thought. This book can be used as a reference guide for researchers and practitioners working in e. g. the fields of operations research, information science, management science and engineering. It can also be used as a textbook for postgraduate and senior undergraduate students.
This book offers an in-depth and comprehensive introduction to the priority methods of intuitionistic preference relations, the consistency and consensus improving procedures for intuitionistic preference relations, the approaches to group decision making based on intuitionistic preference relations, the approaches and models for interactive decision making with intuitionistic fuzzy information, and the extended results in interval-valued intuitionistic fuzzy environments.
This book offers a comprehensive and systematic introduction to the latest research on hesitant fuzzy decision-making theory. It includes six parts: the hesitant fuzzy set and its extensions, novel hesitant fuzzy measures, hesitant fuzzy hybrid weighted aggregation operators, hesitant fuzzy multiple-criteria decision-making with incomplete weights, hesitant fuzzy multiple criteria decision-making with complete weights information, and the hesitant fuzzy preference relation based decision-making theory. These methodologies are implemented in various fields such as decision-making, medical diagnosis, cluster analysis, service quality management, e-learning management and environmental management. A valuable resource for engineers, technicians, and researchers in the fields of fuzzy mathematics, operations research, information science, management science and engineering, it can also be used as a textbook for postgraduate and senior undergraduate students.
This book offers a systematic introduction to the clustering algorithms for intuitionistic fuzzy values, the latest research results in intuitionistic fuzzy aggregation techniques, the extended results in interval-valued intuitionistic fuzzy environments, and their applications in multi-attribute decision making, such as supply chain management, military system performance evaluation, project management, venture capital, information system selection, building materials classification, and operational plan assessment, etc.