Explore the latest books of this year!
Bookbot

K. Sreenivasa Rao

    Language Identification Using Spectral and Prosodic Features
    Language Identification Using Excitation Source Features
    Speech Processing in Mobile Environments
    Robust Speaker Recognition in Noisy Environments
    Predicting Prosody from Text for Text-to-Speech Synthesis
    • Predicting Prosody from Text for Text-to-Speech Synthesis covers the specific aspects of prosody, mainly focusing on how to predict the prosodic information from linguistic text, and then how to exploit the predicted prosodic knowledge for various speech applications. Author K. Sreenivasa Rao discusses proposed methods along with state-of-the-art techniques for the acquisition and incorporation of prosodic knowledge for developing speech systems. Positional, contextual and phonological features are proposed for representing the linguistic and production constraints of the sound units present in the text. This book is intended for graduate students and researchers working in the area of speech processing.

      Predicting Prosody from Text for Text-to-Speech Synthesis
    • This book discusses speaker recognition methods to deal with realistic variable noisy environments. The text covers authentication systems for; robust noisy background environments, functions in real time and incorporated in mobile devices. The book focuses on different approaches to enhance the accuracy of speaker recognition in presence of varying background environments. The authors examine: (a) Feature compensation using multiple background models, (b) Feature mapping using data-driven stochastic models, (c) Design of super vector- based GMM-SVM framework for robust speaker recognition, (d) Total variability modeling (i-vectors) in a discriminative framework and (e) Boosting method to fuse evidences from multiple SVM models.

      Robust Speaker Recognition in Noisy Environments
    • Speech Processing in Mobile Environments

      • 133 pages
      • 5 hours of reading

      This book focuses on speech processing in the presence of low-bit rate coding and varying background environments. The methods presented in the book exploit the speech events which are robust in noisy environments. Accurate estimation of these crucial events will be useful for carrying out various speech tasks such as speech recognition, speaker recognition and speech rate modification in mobile environments. The authors provide insights into designing and developing robust methods to process the speech in mobile environments. Covering temporal and spectral enhancement methods to minimize the effect of noise and examining methods and models on speech and speaker recognition applications in mobile environments.

      Speech Processing in Mobile Environments
    • This book discusses the contribution of excitation source information in discriminating language. The authors focus on the excitation source component of speech for enhancement of language identification (LID) performance. Language specific features are extracted using two different (i) Implicit processing of linear prediction (LP) residual and (ii) Explicit parameterization of linear prediction residual. The book discusses how in implicit processing approach, excitation source features are derived from LP residual, Hilbert envelope (magnitude) of LP residual and Phase of LP residual; and in explicit parameterization approach, LP residual signal is processed in spectral domain to extract the relevant language specific features. The authors further extract source features from these modes, which are combined for enhancing the performance of LID systems. The proposed excitation source features are also investigated for LID in background noisy environments. Each chapter of this book provides the motivation for exploring the specific feature for LID task, and subsequently discuss the methods to extract those features and finally suggest appropriate models to capture the language specific knowledge from the proposed features. Finally, the book discuss about various combinations of spectral and source features, and the desired models to enhance the performance of LID systems.

      Language Identification Using Excitation Source Features
    • This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems.

      Language Identification Using Spectral and Prosodic Features