Gert H. Müller The growth of the number of publications in almost all scientific areas, as in the area of (mathematical) logic, is taken as a sign of our scientifically minded culture, but it also has a terrifying aspect. In addition, given the rapidly growing sophistica tion, specialization and hence subdivision of logic, researchers, students and teachers may have a hard time getting an overview of the existing literature, partic ularly if they do not have an extensive library available in their neighbourhood: they simply do not even know what to ask for! More specifically, if someone vaguely knows that something vaguely connected with his interests exists some where in the literature, he may not be able to find it even by searching through the publications scattered in the review journals. Answering this challenge was and is the central motivation for compiling this Bibliography. The Bibliography comprises (presently) the following six volumes (listed with the corresponding Editors): I. Classical Logic W. Rautenberg 11. Non-classical Logics W. Rautenberg 111. Model Theory H. -D. Ebbinghaus IV. Recursion Theory P. G. Hinman V. Set Theory A. R. Blass VI. ProofTheory; Constructive Mathematics J. E. Kister; D. van Dalen & A. S. Troelstra.
Heinz-Dieter Ebbinghaus Book order



- 2013
- 2007
Ernst Zermelo
- 356 pages
- 13 hours of reading
This biography attempts to shed light on all facets of Zermelo's life and achievements. Personal and scientific aspects are kept separate as far as coherence allows, in order to enable the reader to follow the one or the other of these threads. The presentation of his work explores motivations, aims, acceptance, and influence. Selected proofs and information gleaned from unpublished notes and letters add to the analysis.
- 1999
Finite model theory
- 360 pages
- 13 hours of reading
This is a thoroughly revised and enlarged second edition that presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. The book is written in such a way that the respective parts on model theory and descriptive complexity theory may be read independently.