The book is currently out of stock
Efficient reinforcement learning using Gaussian processes
Authors
More about the book
This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems. First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.
Book variant
2010
Book purchase
The book is currently out of stock.