Propagation effects influencing polarimetric weather radar measurements
Authors
More about the book
Ground-based weather radars provide information on the temporal evolution and the spatial distribution of precipitation on a macroscopic scale over a large area. However, the echoes measured by weather radars are always a superposition of forward and backward scattering effects which complicates their interpretation. The use of polarisation diversity enhances the number of independent observables measured simultaneously. This allows an effective separation of forward and backward scattering effects. Furthermore, it extends the capability of weather radars to retrieve also microphysical information about the precipitation. The dissertation at hand introduces new aspects in the field of polarimetric, ground-based, monostatic weather radars at S-, C-, and X-band. Relations are provided to change the polarisation basis of reflectivities. A fully polarimetric weather radar measurement at circular polarisation basis is analysed. Methods to check operationally the polarimetric calibration of weather radars operating at circular polarisation basis are introduced. Moreover, attenuation correction methods for weather radar measurements at linear horizontal / vertical polarisation basis are compared to each other, and the robustly working methods are identified.