Structural Pattern Recognition with Graph Edit Distance
Authors
Parameters
More about the book
This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED). The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm; describes a reformulation of GED to a quadratic assignment problem; illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem; reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework; examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time; includes appendices listing the datasets employed for the experimental evaluations discussedin the book.
Book purchase
Structural Pattern Recognition with Graph Edit Distance, Kaspar Riesen
- Language
- Released
- 2018
Payment methods
- Title
- Structural Pattern Recognition with Graph Edit Distance
- Language
- English
- Authors
- Kaspar Riesen
- Publisher
- Springer
- Released
- 2018
- ISBN10
- 3319801015
- ISBN13
- 9783319801018
- Series
- Advances in Computer Vision and Pattern Recognition
- Category
- Computers, IT, Programming
- Description
- This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED). The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm; describes a reformulation of GED to a quadratic assignment problem; illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem; reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework; examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time; includes appendices listing the datasets employed for the experimental evaluations discussedin the book.