We have over a million books in stock

Bookbot
The book is currently out of stock

Microfluidic chemical integrated circuits based on stimuli-responsive hydrogels for on-chip flow control

Authors

More about the book

Microfluidics exhibits great capability in various research fields such as biology, chemistry or medicine. The lab-on-a-chip technology brings tremendous advantages over the conventional methods as it increases reaction kinetics, reduces reagent consumption and provides high throughput and parallelization capability. The aspect of parallelization on a large scale requires a powerful control paradigm where a large number of devices need to be manipulated by a small number of inputs. Even though, microfluidics has produced a variety of different platform technologies utilizing the most different physical effects the majority of technologies lack the ability to act on direct feedback from the process liquid. This results in a sophisticated external control unit off-chip which directly hinders high degrees of parallelization respectively integration. This work presents a microfluidic platform concept, which utilizes the volume phase transition of stimuli-responsive hydrogels on-chip to actively switch between fluid streams in a discrete operating manner. The volume phase transition combines the sensing and acting functionality in one component. Smart hydrogels are utilized in a transistor-like device which is capable to autonomously make switching decision exclusively depending on the chemical content of a fluid. The content comprising molecules and ions that exist simultaneously in a solution is viewed as carrier of chemical information. Thus, the chemo-fluidic transistor couples the molecular content of the liquid with the fluidic behavior of the system. The combination of the chemo-fluidic transistor and the analogy between electronics and microfluidic allowed the development of discrete basic circuits such as the logic gates AND, OR, NOT, and their negated counterparts rendering a complete computation. By consequently following the electronic paradigm more sophisticated modules are demonstrated such as an RS flip-flop or a chemo-fluidic oscillator circuit. The chemo-fluidic oscillator exhibits an autonomous oscillation in flow rate and concentration. The system architecture and circuitry allows a decoupling of the excitation stimulus and the emission concentration enabling future biological and medical application. This work discusses a novel concept for the implementation of microfluidic integrated circuits. Main aspects are examined such as technological requirements, the theoretical background, the signal variability and biological application of the system.

Book variant

2017

Book purchase

We’ll notify you via email once we track it down.