Explore the latest books of this year!
Bookbot

Sparse Representation, Modeling and Learning in Visual Recognition

Authors

Parameters

  • 257 pages
  • 9 hours of reading

More about the book

This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.

Book purchase

Sparse Representation, Modeling and Learning in Visual Recognition, Hong Cheng

Language
Released
2015
product-detail.submit-box.info.binding
(Hardcover)
We’ll email you as soon as we track it down.

Payment methods

No one has rated yet.Add rating